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Outline of this Talk

Tailoring Casimir forces with metamaterials

  Effective medium/homogenization in Casimir physics

Brief intro to Casimir physics

Tailoring Casimir forces with nanostructures

  Metallic gratings for Casimir force manipulation 

  Basics, relevance, and simple geometries 
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Brief intro to Casimir physics
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The Casimir force

E =
1
2

�

k

��k �

 It can also be interpreted as arising from 
fluctuations of charges and currents within 
the materials

  The Casimir effect is a universal effect from 
confinement of vacuum fluctuations: it depends only 
on   ,     and geometry~ c

 The magnitude and sign of the force 
depends on geometry, materials, and 
temperature
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Some relevant applications

 Quantum Science and Technology:

Atom-surface interactions (e.g., atom chips)

Nanotechnology: challenges and opportunities

stiction in MEMS Contactless force transmission
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The Lifshitz formula

Reflection matrices (Fresnel formulas for isotropic media):
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Force between materials slabs:
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Going to imaginary frequencies

Kramers-Kronig (causality) relations: 
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Casimir physics is a broad-band frequency phenomenon

F
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The function                          has poles on the 
imaginary frequency axis at 

coth(~!/2kBT )

!m = i⇠m , ⇠m = m
2⇡kBT

~
After Wick rotation:
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The sign of the Casimir force

F

A
= 2h̄

∫ ∞

0

dξ

2π

∫
d2k‖

(2π)2
K3Tr

R1 · R2e
−2K3d

1 − R1 · R2e−2K3d

The sign of the force is directly connected to the sign of the product of 
the reflection coefficients on the two plates, evaluated at imaginary 
frequencies.  As a rule of thumb, we have (p=TE, TM)

Rp
1(i�) · Rp

2(i�) > 0 (⌅ � ⇥ c/d)⇤ Attraction

Rp
1(i�) · Rp

2(i�) < 0 (⌅ � ⇥ c/d)⇤ Repulsion

In terms of permittivities and permeabilities:

�a(i⇥)� �b(i⇥)

µb(i⇥)� µa(i⇥)
Repulsion
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Ideal attraction-repulsion

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4

Sunday, August 11, 13



Ideal attraction-repulsion

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
Boyer (1974)

ε1 = ∞ µ2 = ∞

F

A
= −

7

8

π2

240

h̄c

d4
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Ideal attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)

F

A
= +

π2

240

h̄c

d4

 Ideal repulsive limit
Boyer (1974)

ε1 = ∞ µ2 = ∞

F

A
= −

7

8
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240
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Ideal attraction-repulsion

µ = 1

 Real repulsive limit
Casimir repulsion is associated with strong 
electric-magnetic interactions. However, natural 
occurring materials do NOT have strong 
magnetic response in the optical region, i.e. 

Metamaterials

 Ideal attractive limit
ε1 = ∞ ε2 = ∞

Casimir (1948)
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= +
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240
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 Ideal repulsive limit
Boyer (1974)

ε1 = ∞ µ2 = ∞
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Metamaterials and Casimir
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Effective medium approximation

In the effective medium approximation (EMA) one 
describes the MM with an effective electric 
permittivity and an effective magnetic permeability.  

This is an approximation valid when the MM is probed at wavelengths 
much larger that the average distance between the constituent 
“particles” of the MM.
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EMA: Drude-Lorentz responses

Metamaterial

εα(ω) = 1 −

Ω2
E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2
M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω = 0.1 ΩM,2/Ω = 0.3

ωE,2/Ω = ωM,2/Ω = 0.1

ΓE,2/Ω = ΓM,2/Ω = 0.01

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm

Ω/2π = 5 × 1014Hz

Close to the resonance, both       and         can be modeled 
by Drude-Lorentz formulas  

�(⇥) µ(⇥)
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Attraction-repulsion crossover 
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Drude background

 In some metallic-based MMs, there is a net 
conductivity due to the metallic structure, 
like the fishnet design on the right. 

ε(ω) = 1 − f
Ω2

D

ω2
− iωγD

− (1 − f)
Ω2

e

ω2
− ω2

e + iγeω

µ(ω) = 1 −

Ω2
m

ω2
− ω2

m + iγmω
f : filling factor

A Drude background is detrimental for 
Casimir force reduction or repulsion, 
since it results in an electric response 
much stronger than the magnetic one

�2(i⇤)� µ2(i⇤)

 Rosa, DD, Milonni, PRL 100, 183602 (2008) 
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Optical anisotropy
In an anisotropic medium, the constitutive relations between E, D, B, and H 
are more involved:

due to the tensorial nature of the permittivity and permeability

Examples of uniaxial 
anisotropy in stacked MMs
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Anisotropy: Uniaxial MMs

Anisotropy axis 

Anisotropy produces polarization mixing 
(non-diagonal reflection matrices)

 Rosa, DD, Milonni,  PRA 78, 032117 (2008) 
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EMA: correct model for  

The appearance of the      factor in the numerator is very important: �2

Although close to the resonance this 
behaves in the same way as the Drude-
Lorentz EMA permeability, it has a 
completely different low-frequency 
behavior

µe�(i⇤) < 1 < �e�(i⇤)

Drude-Lorentz for permeability is wrong.  The correct expression that 
results in EMA from Maxwell’s equations is  

No Casimir repulsion!

µ

(Pendry 1999)

 Rosa, DD, Milonni, PRL 100, 183602 (2008) 
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Other Casimir MMs: chirality

The chirality of a MM is defined by the chirality of its unit cell

In a chiral medium, the constitutive relations mix electric and magnetic fields

dispersive chirality: ⇥(⇤) =
⇤k⇤

⇤2 � ⇤2
�R + i�k⇤

Sunday, August 11, 13



Repulsion and chiral MMs

In chiral MMs the reflection matrix is non-diagonal (mixing of E and H fields). 

The integrand of the Casimir-Lifshitz force between two identical chiral MMs  
has the form: 

One might achieve repulsive Casimir 
forces with strong chirality (i.e., large 
values of       ) rsp

 Soukoulis et al.,  PRL 2009 

Same-chirality (SC) materials: repulsion

Opposite-chirality (OC) materials: repulsion
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Going beyond EMA

So far, we have treated the MM in the “long-wavelength approximation”, i.e., 
field wavelengths much larger than the typical size of the unit cell of the MM.

How to calculate Casimir forces when EMA does not hold?
Can one trust predictions of Casimir repulsion with MMs based on EMA?

Homogeneous 
medium

Non-homogeneous 
medium

EMA beyond EMA
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Casimir nanostructures
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Scattering theory
The Casimir force still may be described 
in terms of reflections (scattering theory)

Symbolically, we may write the Casimir energy as

x

y

z

{a

{h

yy

{{{

h1
h3 h2

/
1X

n=1

1

n
[R1(i⇠)e

�dK(i⇠)R2(i⇠)e
�dK(i⇠)]n

Ri(!,k,k0, p, p0)
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Solving for the reflection matrix
The reflection matrix can be obtained with standard methods of numerical 
electromagnetism. One way is to solve Maxwell equations for the 
transverse fields

Assuming a two-dimensional periodic structure, we have

where 
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⇤

m,n

Em,n exp
�
i
2�n

Lx
x + i

2�m

Ly
y

⇥
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⇤

m,n
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�
i
2�n
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x + i

2�m
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⇥
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Exact reflection matrix

One can then write the equations for the transverse fields as

Here H is a complicated matrix, that encapsulates the coupling of modes in 
the periodic structure.

By numerically solving this equation and imposing the proper boundary 
conditions of the field on the vacuum-metamaterial interphase (RCWA or 
S-matrix techniques), one can find the reflection matrix of the MM.
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2D periodic structures
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 Davids, Intravaia, Rosa, DD, PRA 82, 062111 (2010)

Casimir force between a Au plane and Si pillars/grating/membrane @ T=300 K

Casimir Force

Position Sensor

D
ep

th

Distance (a)

R = 50µm
period = 400 nm

depth = 1070 nm

fpillars = 1/4

fmembrane = 3/4

fgrating = 1/2

Note: The MIT group has developed much more advanced numerical methods

(previous talk by Alejandro Rodriguez)
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Casimir plasmonics

z

z
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Mode summation approach

An alternative approach to the scattering formulation is to compute the 
Casimir energy as a sum over the zero-point energy of the EM in the 
presence of boundaries

E =
X

p,k

~
2

"
X

n

!p
n

#

L| {z }
Infinite zero point energy

�
X

p,k

~
2

"
X

n

!p
n

#

L!1| {z }
Setting the zero

In the case of metallic plates described by the plasma model

E =
X

k

~
2

[!
+

+ !�]LL!1
| {z }
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+
X
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"
X
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L!1| {z }
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Surface plasmons interaction

Surface plasmons are evanescent modes of the 
EM field associated with electronic density 
oscillations at the metal-vacuum interface.

When the tails of the evanescent fields overlap, 
the two surface plasmons hybridize

At short distances the Casimir energy is given by the shift in the zero-
point energy of the surface plasmons due to their Coulomb (electrostatic) 
interaction)

z

z
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Mode spectrum in a cavity

TM-modes propagative modes look qualitatively like TE 
modes.

There are only two evanescent modes. They are the 
generalization to all distances of the coupled plasmon 
modes.
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All the TE-modes belong to the propagative sector 

They differ from the perfect mirrors modes because 
of the dephasing due to the non perfect reflection 
coefficient.
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Plasmonic-photonic contributions 

• At short distance the plasmonic contribution dominates and is attractive

• At large distance the two contributions are opposite in sign and balance

Lifshitz = Red + Blue

Can one control the Casimir force by changing 
the balance of the two contributions?
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 Metallic nano-gratings 
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Strong force reduction
 Torsional balance set-up

 Metallic sphere

 Metallic nanostructures w, p, h ⇡ 100 nm

 Sputtering and electroplating

filling factor

f =
w

p

(R = 150 µm)

IUPUI, ANL, NIST, LANL collaboration

Sunday, August 11, 13



Modeling and simulation

 Exact computation of the plane-grating pressure Ppg

 Use of standard PFA to treat the sphere’s curvature

F 0
sg ⇡ 2⇡RPpg d/R < 6⇥ 10�3

Scattering approach + modal expansions
0
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Analytical expressions for eigenvectors
Transcendental equation for eigenvalues

Li (1993)
y

x

p1 p2

{{

{ p

 Intravaia et al., PRA 86, 042101 (2012)
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Reflection matrices
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Normalizing to PFA for grating

1000500200 300 700
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DistanceHnmL

PêP
PF

A

p=250nm, w=90nm, h=216nm

p=300nm, w=116nm, h=214nm

(Similar filling factors)

Small separations:  PFA underestimates the 
total pressure.

Large separations:  PFA overestimates the 
exact pressure.

Pressure is going to zero faster than d-4

 Strong suppression of the Casimir force

PPFA
pg (d) = fPpp(d) + (1� f)Ppp(d+ h)

f1 = 0.387f1 = 0.360

d d+ h
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Open problem
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WHY?

Double checks on the 
experiment show no 
apparent mistakes

Numerical crosschecks 
show that the theory is 
accurate within few %

 Intravaia et al., to appear in Nature Communications (2013)
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